User Interfaces

H.J. Schouten

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

At CWI a specialised tool for the construction of user interfaces called Dialogue
Cells has been developed. This paper describes the work, and the place of
this system within the area of user interfaces.

. INTRODUCTION

[.1. Definition of user interfuce

By the user interface of a computer program is meant the way the program
communicates with 1ts user. Obviously the contents of the information
exchanged can be different on each execution of the program. The form of the
user input may depend on the choices of the user; the foi of the computer
output may depend on the input values. But the allowable forms of input and
the way the output depends on the input i1s fixed by the program and the

environment. This 1s called rhe user interface of the program.

1.2. History of user interfaces

User interfaces have evolved in conjunction with technology. Input to the
earliest computer programs was provided by setting switches. Output was the
on/oft status of a set of lights. The amount of information exchange was lim-
ited by the number of switches and lights of the computer. Paper tape and
punched cards allowed an increase of the amount of input and output (I/0). A
big step forward was the automatic translation of the /0 codes into charac-
ters. Input could be typed in and output printed. This allowed computer pro-
grams to be used interactively: the user could react to computer output
immediately with further input parameters. The introduction of CRT displays
allowed users to choose between temporary output on a screen, and permanent
output produced on paper by separate printers. Gradually forms of input and
output other than textual emerged. Graphical output could be produced both
on screens and plotters. Input could be produced by pointing devices such as
lightpen and mouse. Nowadays user interfaces commonly have a mixture of
text and graphics output, and keyboard and mouse input.

Copyright @ 1991, Stichting Mathematisch Centrum, Amsterdam
CWI Quarterly 3, 203-218

1.3. Problems with user interfaces

The progress in computer technology has caused the limiting factor of user
interface quality to be shifted from hardware to software and design. The
enhanced possibilities do not automatically guarantee better user interfaces
however. First it is not at all a trivial question what is a good user interface.
An objective measure of quality has to be extracted from intrinsically subjec-
tive tastes of the users, in order to be able to incorporate it into the (static)
definition of the user interface. Second, the programming of a user interface
s, as any programming work, a hard job. The construction of user interfaces is
especially difficult because it has to deal with the unpredictable behaviour of
the human user. Furthermore, user interfaces tend to be complex in order to
exploit the vast range of possibilities provided by the technology.

[.4. Current trends in user interfaces

The spread of computers in society has caused the group of computer users to
be dominated by non-professionals. This makes the user interface a more
important part of computer programs. The user interface can no longer rely
either on the programming skills, or even, some knowledge of how computers
work. The user interface may well become the distinguishing feature between
competing programs.

The ways user interfaces adapt to these developments is (grosso modo), on
the one hand byesimplification and on the other hand by extension of the
features. Simplification is achieved by the move from textual to graphical user
interfaces. Even small home computers have system user interfaces with icons,
menus, resizable windows, etc. Often a well-known situation is employed as a
metaphor for the behaviour of a user interface. Best known is the desk top
metaphor where files can be moved around as if they were sheets of paper, and
icons represent objects such as printers and trash cans. Extensions to user
interfaces are achieved by allowing the user to do the same thing in multiple
ways and to do multiple things at the same time. An example of the former is

a shortcut for (nested) menu selections. An example of the latter is the use of
multlple windows, each running i1ts own application. Although this parallelism
makes the user interface per se more complicated, it can in fact simplify the
work to be done by the user considerably. Consider for example the situation
where the user has entered deeply into a menu hierarchy, to find out that he
needs additional information to make the next selection. Without the possibil-
ity to side step into another interaction to find the information while the menu

context 1s maintained, the user would have to backtrack through the menu
hierarchy, get the information, and go back to where he was.

1.5. Research areas in user interfaces
Research on user interfaces can roughly be divided into two areas: design and
tools. Here only a few of the many issues in the two areas can be touched
upon.

The topic of the field of cognitive ergonomics of human-computer interaction is
the quality of user interfaces in the broadest sense. It tries to find measures for

204

user interface quality and to design methods that lead to good user interfaces.
[t 1s hard to give any quantitative measures for the quality of user interfaces.
However, important relations between properties of actors in the system (user,
application, workstation etc.) can be given. For example, which kind of user
interface is good depends very much on the kind of application and the
intended group of users. In command systems newcomers tend to prefer
menus, whereas experienced users often prefer command line input. The nature
of the commands might pose limitations on their representation, €.£. 4s menus
or icons. Introductions to ergonomy of human-computer interaction are c.L.
Martin [1], and Card et al. [2].

Artificial intelligence techniques can be used to improve the understanding
of the user by the user interface. For instance, natural language parsing allows
for more human-human like conversation. Reasoning about the behaviour of
users might be used to be able to adapt a user interface to a particular user.

Design and subsequent implementation of a user interface is hard without
specialised tools. Two types of such tools have been developed. A roolkir is a
set of standard interaction techniques from which user interfaces can be com-
posed. The tools are fixed or parameterisable. They form a library of features
common to many user interfaces. A glue system is provided to control the
composition of the tools. Toolkits are embedded in a general purpose pro-
gramming language. They usually come with window manager environments.
The toolkit of the X window system [3] is a prototypical example. User inter-
Jace management systems (UIMSs) are more comprehensive tools. They come
from the area of computer graphics rather than window managers. They are
also older. The term was introduced by Kasik [4] but comparable systems
existed much earlier, e.g. Sketchpad [5]. At CWI, research has been per-
formed on one such system, called Dialogue Cells (DICE for short). Therefore
UIMSs are introduced more thoroughly here. Introductions to tools in general

and UIMSs are Myers [6] and Hartson and Hix [7].
2. USER INTERFACE MANAGEMENT SYSTEMS

2.1. Separation of the user interface

The underlying idea of user interface management systems 1s that the user
Interface can be separated from the application. They are regarded as two
loosely connected modules. The functionality of the application does not
depend on how the user provides it with information. Therefore the user inter-
face can be designed, developed and maintained independent of the applica-
tion, as long as the interface between the two is fixed.

T'he separation of user interface and application allows the use of a
specification language especially intended for user interfaces. This requires a
clear view of what interaction is, what aspects are involved and how they
relate. In other words, what is necessary is a model of interaction. A user inter-
face specification language then can have primitives that address the aspects of
the model, with its relations reflected in the language.

205

i

] |

j g

}J

! |
E - a4 o ,‘ I S ks | @ C g G {;“ a g g 0 ?ﬁ " i
|
|
|
r 5
i
|
|
3 :'-
;

;

;

FiGuURre 1. Structure of user interface software

The structure of a user interface 1s depicted in Figure 1. The user in-

teracts w -%nh an a:a-ppm:mum Eh rm,&f?h ww&mﬁ mywsf E*"fﬂ@ IS ﬁn dimu contact

P ' |

.i duw*& h‘wn d ::mu ham s}xum andﬁm Mndw nhma&unam x‘,xtcm
shield the hardware intricacies from the layers of top of them and pmwdt
the basic primitives for drawing and graphical input. Some low level in-
teractions of the user interface are provided by a toolkit of interaction tech-
- niques. The latter 1s part of the run-time system of the UIMS. The run-time
systemis also responsible for managing the resources of the workstation.
- The user interface program defines the complete user interface. It defines
;wllcrl and which interaction techniques are available to the user, what kind
of feedback should be provided, which results are sent to the application |

rd interaction tct,hmqucs 1s directed to the

ete. Feedback of non-stand:
| graphics system directly. Some UIMSs require the application to provide the
feedback: they manage only the input.

The user interface program can be specitied in a special purpose language

provided by the UIMS. A compiler generates the user interface program
| from the specification.

. RO ool M reymwirre o) TR D T U B LI A I AL et ey B mm s T T T R AT T T ———— "y

Apart from improvements in the design and development process of user
interfaces, the recognition of user interfaces as a separate module can possibly
lead to the improvement of the user interfaces themselves. Both in desngn and
development, specialists for user interfaces can be appointed. The hope is that

these user mtuﬁau designers and dialogue programmers can create better user
interfaces than application programmers.

2.2, Definition of User Interfuce Management System

En the hiterature the term User Interface Management System is rarely defined
precisely. As a consequence (or maybe the other way around!) many different
systems call themselves UIMSs. Here a User Interface Management System 1s
regarded to be a system that is both a tool to create the user interface part of

206

interactive programs, and a run-time system necessary to implement the user
interface constructed with the tool.

Most commonly the form of this tool is a language which is especially suited
for describing interaction. The language has primitives to describe the control
flow within the user interface, the layout of the screen, etc. A set of predefined
interaction techniques is usually also provided. The development tools can
include support for debugging and evaluation as well.

2.3. Specification of graphical interaction

[nteraction can be described in any general purpose programming language

and traditionally it 1s. But it is more convenient to describe the tasks that typi-

cally have to be performed by interactive programs in terms that better

correspond to the higher level of abstraction in which dialogue programmers

think about these tasks. The special purpose language of user interface

management systems allows for this. Some tasks that are typical for interac-

tive programs are:

® Control structure of inpur. This includes the work to make input values
avatlable to the application at the moment it needs them. The proper
Input mechanisms must be made available to the user so that it is possible
for him to enter these inputs before or at the moment it is necessary. If a
single complex input value for the application requires multiple inputs
from the user, the way the complex value is structured into simple inputs
has to be described.

® Resource management. To make input mechanisms available to a user,
physical input devices must be allocated to the mechanism and deallo-
cated. Likewise, the screen space necessary to show the feedback must be
allocated and deallocated.
It 1s a well-known problem from text based terminal use, that feedback
from the keyboard can get mingled with application generated output. In
graphical user interfaces, with a larger number of input devices and
accompanying feedback, which is not expected to interfere with graphical
output, this problem is greatly increased. Therefore it is necessary to
order them 1n space and/or time.

® Input mapping. The values that the application needs may be 1n a format
that 1s not usable for direct user input. A simple example 1s the applica-
tion requiring a number, that is entered by the user as a string. In cases
like this the user interface must map inputs from one format to another.
The feedback and application output must be specified. The language
interface to the graphics system used in the UIMS can be chosen such
that it is easier to describe the graphics system concepts, than in general
purpose programming languages.

T'he specification language of UIMSs have provisions for the specification of

these tasks. In general the semantics of the primitives for these provisions are

more complex than in general purpose programming languages.

The specification of interaction can be done in several ways. The traditional
approach is to construct a text file containing the specification and afterwards

207

ram. A user ﬁmwMu can h%, dulg,ncd muwdmé to EE at nmwﬁ

and then constructed usin o the UIMS. The model of interaction used in
DICE 1s the transaction model. In this model the issuing of a command with
its parameters by a user, together wit eed 1s regarded as
one wmw Sm hane may 1s called a rransaction. So a transaction 1s the execu-
tton of an interaction unit in an mteractive program. lransactions can consist
of a number of simpler transactions, 1.e. transactions are nested. A single utili-
satton of an nput device with its feedback 1s the most basic transaction from
hich more complex transactions are built. The dialogue as a whole is the
enclosing transaction.

A classical model of a UIMS is the Seeheim [9] model depicted in Figure 2.

The model sees a UIMS as being composed of three components exchanging
tokens. The pmwm.amun component 1s responsible for the interface to the user.
[t manages the mput and output devices. The dialogue control component
manages the structure of the dialogue. It tells the presentation component
which tokens may be received. and controls which tokens are accepted and in
what order. The apphcation interface component manages the interface to the
apphcation. The functionality of the application that is required in the user
interface is accessed through it. It regulates the control between the dialogue
control component and the application.

:'."r'"".'“ AT o e e H ok St U oot e L s e L P Ty : v " .'-"1 ;I. v b e e T e e eI R P e e T ay ¥ 1 i el Ay
? - |
i

| _ dialogue | application | e
<> < APPLICATION

control | . interface

FIGURE 2. The Seeheim model of UIMS

2.6. Dialogue control model

The application interface component is the least well developed among these
three components. A workshop in Seattle [10] attempted to shed more hght on
this, but still more work in this area has to be done. Most research in the

UIMS area has been devoted to the dialogue control component. UIMSs use

208

a model for the control structure of the dialogues they support. This model is
the basis of the dialogue control component. Much research has been devoted
to the usefulness of different models for this component. The main three types
of model that have been developed are event. grammar and transition nerwork
models. Each will be discussed briefly. An overview of these models and their
relative power is given in Green [11].

2.0.1. The event model. In an even:r model, control is regulated by the
occurrence of events. Events are either generated by the user or the program,
including events generated inside the user interface and events generated by
the application. For every type of event there is a registered function that
reacts to that event. Typical functionality of these functions include the gen-
eration of feedback, the enable/disabling of event types and the generation of
follow up events.

2.6.2. The grammar model. In a grammar model, interaction is viewed as a
language which user and program use to communicate. A UIMS utilising this
model provides a parser that parses the input token stream. The accepted
language depends on the grammar that is provided by the dialogue program-
mer. The potential power depends on the class of the grammars that can be
used. Context free grammars are common place, since there are well-known
parsing techniques for them, but other types of grammars can be used as well.
Actions can be performed on shift and reduce steps of the parser.

2.6.3. The transition network model. In the transition network model the user
interface 1s in one of a finite set of states. In each state a finite set of transi-
tions can be made, depending on the user action. When the user does an
action, the corresponding transition to a new state is performed and the associ-
ated reaction is performed. The power of the model is enhanced to that of con-
text free grammars if recursive transition networks (RTN) are allowed. The
power of context-sensitive grammars can be achieved by augmented transition
networks (ATN), in which each state can contain registers with associated func-
tions. The functions can determine, based on the value of the register, which
transition 1s to be made.

2.7. Multi-threaded dialogues

A multi-threaded dialogue is the conduction of multiple independent or com-
municating dialogues at the same time. The user is free to switch from one
thread to another at any point in time. The aforementioned example of the
hierarchical menus indicates that it is important for UIMSs to support this.
The model of the dialogue control component must encompass the ability to
do the switching. It might also provide the control over the time periods or
dialogue states when the switching can be done. Such dialogues can be
described easily in the event model. It can also be described by certain classes
of grammars. The DICE system is an example of the latter.

209

2.6. Types of interaction control

Two basically different ways of how user inputs influence the flow of control in

a user interface can be distinguished.

® /nrernal control. Here the program i1s in charge of the interaction. The
transactions are initiated by the program. The program runs until 1t needs
some information from the user. It prompts the user to enter the infor-
mation and then waits until he has done that. In this scenario the user
acts as a source of information to the program.
txternal control. Here the user initiates the transactions. The program is
responsible for enabling the mput devices. It must provide functions for
each possible type of user input to implement the reactions. In this
scenar1o users are more free in the choice of transaction. They have the
feeling of controlling the program instead of the reverse. Therefore users
like this type of interaction better than internal control.

For complex transactions external control is not completely achievable. There

are two reasons for that:

- It may be inconvenient to the user. If the user is busy with one coherent
transaction at a time, 1t 1S not necessary to have transactions for unrelated
transactions available. Furthermore, there is a logical structure over the
transactions in general. Transactions may not be meaningful in certain
contexts. The application normally imposes a logical ordering on the tran-
sactions.

- It cannot be implemented on workstations with limited resources. If
several transactions require the same resource and this resource cannot be
shared, they cannot be available at the same time. A resource is, for exam-
ple, an input device. It cannot be shared if the program bases its decision
for which transaction the input is on the used resource.

The usual approach to this, is to have moded dialogues. The dialogue is subdi-
vided into modes. In each mode a set of transactions is available that do not
conflict and which i1s not too complex, so that external control is possible
within that mode. Special transactions are added to allow the user to navigate
between modes. If the user 1s required to finish the transaction (or set of tran-
sactions) associated with a mode before he can navigate to a different mode,
the interaction type on the mode level is internal control. Such an interaction
type 1s called a mixed mode or mixed initiative interaction.

3. DIALOGUE CELLS

A user Interface consists of a number of nested transactions. These transac-
tions are seen as separate processes, called dialogue cells. When the user has
performed the input actions necessary for the transaction, it produces some
result. Since transactions are nested, dialogue cells are organised hierarchically.

A dialogue cell can delegate part of its work to children dialogue cells (sub-
cells). Dialogue cells deliver their results to their parent. Dialogue cells that
are the leaves of the process tree get their results from a user input value.
Higher level dialogue cells compute their results from one or more subcell

210

results. The results of the root dialogue cell are the ultimate results of the
dialogue that are delivered to the application.

3.1. The dialogue component of DICE

The DICE system has a dialogue component based on the grammar model.
Each dialogue cell program defines an input language. The allowed sentences
of the languages can be produced from a set of grammar rules, defined within
the program. The inputs of the user are the terminals of the language. Each
grammar rule defines one non-terminal. Each dialogue cell, except for a leaf of
the process tree, possesses exactly one grammar rule. So there is a 1-1
correspondence between higher level dialogue cells and non-terminals in the
input language. The leaves form the set of terminals of the imput language.
The results of dialogue cells are the tokens of the input language. An example
of this 1s shown in Figure 3.

A ::=BC

B ::=de
O

OROJORO S

FIGURE 3. Correspondence of DICE and input grammar

The grammar rules that are used in dialogue cells are regular expressions,
extended with pseudo variables. The latter allow that the language recognised
by a dialogue does not only depend on the grammar rule, but on the value
associated with the input tokens as well. Thus the power of the input language
1s extended beyond the class of regular languages. In fact, it can be proven
that all context free languages and some context sensitive languages can be
generated.

3.2. Activation of dialogue cells ._ | _ _

The grammar rules of the dialogue cells determine the syntax of the acceptance
of the result of children dialogue cells. The children can only produce results
when they are active. Therefore dialogue cells are activated and deactivated by
their parent. It is clear that if a dialogue cell’s parser 1s ready to accept one or
more of the child dialogue cells’ results, these child dialogue cells must be
active 1 order for the parser to be able to proceed. This does not mean that a
child dialogue cell cannot be activated before its parent is ready to accept its
result, which is called early activation. DICE supports early activation by
separating the moment of activation and deactivation of children dialogue cells
from the moment the parser is ready to accept a token, which allows users to

211

provide puts before the program 1s ready to-accept them. Early actwatlon
can be regarded as a generalisation of type ahead. o

3.3. Description of the system

3.3.1. The grammar rules. The grammar rules of dialogue cells are regular
expressions consisting of subcell tokens and operators. The operators modify
the allowed ordering of the acceptance of the subcell tokens in the grammar
rule. The grammar rule of a dialogue cell is called a symbol expression. The
bubcell tokens are called symbols in the sequel.

A subexpression is either a single symbol, a subexpression within parentheees
or an expression with operators as described below. These will recursively
define a subexpression. A symbol expression is simply a subéxpression. The
operators are described below. In the descriptions 4 and B stand for arbitrary
subexpressions.

3.3.1.1. The sequence operator. The sequence operator ; 1s binary. It separates
two subexPressions The operator denotes sequential acceptance of the subex-
pressions. Subexpression 4 ;B means that the pdrser will first a(,c:ept A, and
after 1t has completely dealt with A4, 1t accepts B

The next example shows the symbol expresuon of a simple mput technique
to produce a rectanguldr box:

loc | locZ

where both return a location on the screen result. The result of /oc 1 1s used for
the fixed point of the rubberbox echo’of loc2.” Therefore they must be entered
sequentially. The resulting points together are used to fo,rm a rectangular box.
3.3.1:2. The repetition operators.” ‘There are two operators for repetltlon both
denoted by *. One is a postfix, and the other is a prefix operator.

The expression (A4)*var means that the parser accepts one or more instances
of the subexpression A. Var is a boolean variable, taking one of the values
CONTINUE or STOP. The value determines whether or not a new iteration is
due. The variable is defined by the programmer and can be set in a trigger rule

(see Section 3.4). The value asmgned to the varlable will In general depend on
the results of the dialogue cells in subeXpressmn A, |

E_XAMPLE"‘;
~ (pick)* CONTorSTOP .

where pick returns an identification of a picture element. Multlple picture ele-
ments can be chosen by the user until some stop criterion is met. Then
CONTorSTOP can be a531gned the value ST OP and the iteration is halted

The expression var‘*(A) means that the parser accepts ZETO Or more 1nstances
of the subexpression 4. '

212

The difference between the two operators is, that in the postfix case, the
parser control variable is examined after a subexpression has been accepted,
and 1n the prefix case this is done beforehand. So they are comparable to
repeat and while constructs in programming languages.

3.3.1.3. The case operator. The case operator is an n —ary operator, with n=2.
It 18 written as

case A of (B,,B>,...,B,)).

Both A and B, mandatory. When faced with this case expression, the parser
first accepts 4, and then, depending on the value associated with A, accepts
either By or B, or ... or B,. Dialogue cells symbols that are not selected are
1ignored.

Again the value associated with a symbol controls the parser. An integer
variable must be set to determine the subexpression to be parsed next. The
variable will in general depend on the value of 4. With the case operator,
alternative paths in the interaction can be taken. A common interaction tech-
nique for which the case operator is used is a menu. With the repetition and
case operators the flow of control of the interaction can be made dependent on
the semantics of the interaction.

3.3.1.4. The or operator. The | operator is a binary operator. When the parser
reaches the expression A4 |B, it accepts either subexpression 4 or subexpression
B, whichever is available first. If both are available at the moment the parser
reaches the expression, one is chosen nondeterministically. The or operator
allows for the provision of multiple interaction techniques for the same type of
result.

EXAMPLE.
loc 1|coordinates

where coordinates is a subcell accepting coordinates typed in on the keyboard.
Loc]l can be used to enter the location by a pointing device.

3.3.1.5. The and operator. The & operator is a n-ary operator, with n=2.
When the parser reaches the expression 4 ,&A4,& - - - &4, it tries to recognise
all A;, i=<<n but it accepts them in any order. The whole expression is recog-
nised when all A, have been accepted. Multiple symbols may be available
before the parser is ready to accept them. The parser will accept them in a
nondeterministic order. By using this operator the user is not forced into a
particular order of providing inputs, when the application does not require so.

3.3.2. Activation moment control. The moment of activation and deactivation
of dialogue cells is controlled by the parent’s symbol expression and the activa-
tion mode of the dialogue cell. The activation mode has one of the values
request, event and sample. These will be explained below.

213

The activation mode 1s determined by the parent; different instances of the
same dialogue’cell can be active in different modes. The activation mode of the
parent has no effect on the activation mode of the children. In the hierarchy of
dialogue cells any combination of modes 1s allowed.

3.3.2.1. Activation in event or sample mode. When a cell 1s activated in event or
sample mode, 1t 1s activated immediately after its parent 1s activated and deac-
tivated immediately before its parent i1s deactivated. The difference between
event and sample mode 1s semantical. If a subcell 1s activated in event mode,
the parent gets a result when the subcell provides one; the parent obtains a
result from a subcell in- sample mode immediately without waiting for 1t to
provide one. For the moment of activation there 1s no difference.

3.3.2.2. Activation in requést mode. The moment of activation of a dialogue cell
In request mode depends on the symbol expression of its parent. It becomes
active immediately before the parent’s parser reaches its symbol in the symbol
expression. It 1s deactivated immediately after the parent has received its
result. The activation of dialogue cells in request mode in complex symbol
expressions is described below.

For the subexpression A :B, dialogue cell A is activated as soon as this
subexpression i1s reached. 4 1s deactivated when 1ts parent has received its
result and then B 1s activated.

If the subexpression 1s *(A4), A is activated when the stop criterion is not
met. A 1s deactivated after i1ts parent has received its result. This means that
for each iteration, A is activated and deactivated. For the subexpression (A4)*
the activation and deactivation scheme is identical.

For the subexpression case 4 of B,,....B,, A is activated immediately when
this subexpression is reached by the parser. It is deactivated when its parent
has received its result. If, in the case expression, A selects B;, B; is activated
immediately when 1t 1s selected, and deactivated when its parent has received
its result. No other B,’s in request mode are activated.

In the subexpression A4 |B, both 4 and B are activated as soon as the parser
has reached this subexpression. Both 4 and B are deactivated as soon as their
parent has received the result of either A or B.

Similarly, for subexpression A&B, both A and B are activated as soon as this
subexpression 1s reached. They are deactivated when its parent has received its
result. The & and | operators, and the event and sample activation modes pro-
vide ways to activate dialogue cells in parallel. They allow for the implementa-
tion of external control and mixed initiative type dialogues.

3.4. Trigger rules .

Whenever a symbol of a symbol expression is parsed, an associated semantic
action can be performed. This is similar to formal language parsing, where the
associated actions generate the object code. Here the semantic actions generate
the reaction of the dialogue program to the user input that caused the produc-
tion of the parsed symbol. :

214

The actions are said to be rriggered by acceptance of a symbol by the parser.
The actions together with the identification of the subexpression with which
they are associated, are called trigger rules. From within the trigger rules the
possibility exists to communicate with the application program. This serves
(WO purposes:

First, the application can be requested to perform a calculation using a
value returned by a subcell. It may be not practical to let the dialogue cell per-
form the calculation itself; this might necessitate copying a substantial part of
the application functionality. The purpose of the calculation may be the
transformation of the result to an appropriate data type. or checking the result
for semantical correctness. The result may also be used to perform semantic
feedback.

Second, an intermediate result may be passed to the application. If this was
not possible, the dialogue would have to stop here. A new dialogue would
have to be started for the rest of the interaction. This is inconvenient if a large
amount of context 1s shared by the interactions.

.....

Resource management was mentioned as one of the tasks of a UIMS. The
DICE system provides a method of specification of hierarchical resources and
the run-time support system includes a sub-system to realise the resource
specification.

There are two types of physical resources that are typically scarce for an
Interactive program: (graphical) output resources and input devices. Among
the tasks of an interactive program is their management. A DICE program
consists of a number of concurrently working, rather independent processes,
each possibly requiring resources. Some may compete for the same resource.
This needs to be resolved in a systematic way, so that resource conflict resolu-
tton can be automated. Each dialogue cell needs both screen space (to show
its feedback) and input devices (to obtain its input values). Therefore a dialo-
gue cell has a resource which is a combination of a window and a set of input
devices.

A dialogue cell can request one of a specified set of windows. This allows
the same dialogue cell to be used in multiple windows. A window can be
defined to be relative to the dialogue cell’s window, or to be on a fixed posi-
tion. The first option allows the visible part of a dialogue cell to be contained
In that of its parent, so that the dialogue cell hierarchy is conveyed to the user.
The second option is available to dialogue cells that need a window at a fixed
position and with fixed size, such as dedicated error and help message win-
dows. Within an absolute window, a window hierarchy can be started again
for more complex dialogue cells. If no window is requested, the parent’s win-
dow 1s inherited.

A dialogue cell can request one of a specified set of input device sets. Simi-
larly to windows, this allows the same dialogue cell to be used many times
each possibly having a different set of input devices. An input device set is
that which is needed by the dialogue cell and its children to perform its work.

215

Therefore 1t 1s always a subset of the set of input devices of the parent.

The user is in an ambiguous situation when he/she can perform an input
that can have multiple meanings. In a dialogue cell program this means that
multiple dialogue cells utilise the same input device, while no distinction can
be made based on the window. This is undesirable because the user cannot
predict what the result of the input would be. In DICE such a situation can-
not arise, because every dialogue cell 18 assigned a unique resource; no two
active dial ogue cells can have both the same window and the same input dev-

ice. This uniqueness is also used to resolve ambiguities in the input language
grammar.

3.6. Basic dialogue cells

A dialogue cell program effectively defines a language (i.e. the language that
the computer program and the user use to communicate). The terminal sym-
bols of this language are the dialogue cells that have no subcells. These are
called basic dialogue cells or basic cells for short. They take their input directly
from the user. As any other dialogue cell, the input type and the feedback 1s
described completely in these cells. They rely on the graphics system underly-
ing dialogue cells to realise these descriptions, and to a(.,tudlly obtain the input
value. | ’ _

It might not be possible to implement some basic cells on some worksta-
tions, because they require resources that are not available on the workstations.
Therefore the definition of basic cell is extended in two steps to avoid it to be
workstation dependent.

A basic cell that 1s not directly implementable on a workstation can be
simulated by using other basic cells that are available. By keeping the inter-
face to the dialogue cell the same, higher level dialogue cells can use this cell
the same way as if 1t was directly present on the workstation.

Since the capabilities of workstations are growing continuously, it is conceiv-
able to have dialogue cells that are not directly implementable on any existing
workstation, but may be in the future. This can only be the case for dialogue
cells that do not rely on a particular application program, i.e. dialogue cells
that have no interface to an application. Therefore any dialogue cell, that does
not depend on an application, is called a basic cell as well.

Now an interaction technique is simply a basic cell. A library of basic cells
1s provided with the dialogue cell system. It serves the same purpose as a
toolkit.

3.7. Dialogue cell picture environments

The dialogue cell system is intended to be device independent. Although
resource availability changes with workstations, by the appropriate choice of
dialogue cells, a programmer can specify a dialogue that can run on several
workstations. ‘Therefore the 1/0 is specified in a device independent way.
Needless to say that it will in general be graphical. To support this, a device
independent graphics system is used as part of the run time support system,
which 1s called the radical system.

216

A dialogue cell being a process has its own data set, which includes its
Grdphlc,dl output. Such a dlSJU.IlL'[output data set, together with the functmns
operating on it that do not interfere with other output, 1s called an environ-
ment. An environment 1s like a small, local graphics system of its own. How-
ever, it has implicit relations with other existing environments. These relations
determine how coexisting local environments share a WOl‘kbthOﬂ This
includes the ordering of picture elements from different environments on the
screen and the determination of which environment will ;receive which input.
Furthermore, environments are related to be able to exchange output.

Environments form the basis for hdndlmg parallel output and 1nput; for

each dialogue cell one environment is created. The functions within an
environment can execute in parallel, which allows modular specification of the
dialogue cells.
- Every environment has its own world coordinate system. Output of an
environment is specified in these coordinates. The extent of a world coordinate
system 1s defined by the process owning the environment as a rectangular area
aligned with the principal axes. Durmg display, world coordinates are mapped
to device coordinates by a mapping which maps the world coordinate system
extent to the window of the dialogue cell.

A radical 1s the central picture element of the radical system. The term radi-
cal originates from chemistry. It is chosen to indicate that radicals react vividly
with their environment. _

A radical 1s a compound picture element consisting of an arbitrary number
of output primitives (polylines, polymarkers, etc.). No primitives can exist out-
side radicals. Radicals and primitives have attributes that control their
appearance.

4. CONCLUSION

In the DICE system the concepts of grammar based interaction control are
combined with concurrent dialogues. The former allows an interaction
language to be specified directly as a grammar, while the latter improves the
freedom of choice for the user. The hierarchy of transactions models the way
the result of the interaction is obtained from simple inputs to ever more com-
plex structures. The employed context independent resource model allows
dialogue cell programs to be constructed from reusable components, such as a
library of basic cells. The DICE system has been implemented on a number
of workstations and window systems. Plate VIII shows a snapshot of an
Interactive session programmed in the dialogue cell language.

T'he system does not guarantee good user interfaces, but provides a way to
construct them. The emphasis was not on generally useful elements of user
interfaces, such as help systems and undo support, but rather on the basic
layer in order to be able to create such features. A next step might be to inves-
tigate how well these things fit in DICE. The strictly hierarchical process
organisation turned out to be unwieldy for some applications. Research is ini-

217

tiated to how this can be made more flexible, without sacrificing the interac-
tion model. This must result in the successor of DICE., called Transaction Cells.

REFERENCES

.
,

st o

3.

10.
- cial Issue.
11.

J. MARTIN (1973). Design of Man-Computer Dialogues, Prentice-Hall.

S.K. CARD, T.P. MORAN, A. NEWELL (1983). The Psychology of Human
Computer Interaction, Lawrence Erlbaum.

R.W. SCHEIFLER, J. GETTYS (1986). The X window system. ACM Tran-
sactions on Graphics (April).

D.J. Kasik (1982). A user interface management system. Computer
Graphics 16 (3), 99-106.

[.LE. SUTHERLAND (1963). SKETCHPAD: A man-machine graphical com-
munication system. Proceedings SJCC ’63.

B.A. MYERS (1989). Tools for creating user interfaces: an introduction
and survey. IEEFE Software (January).

H.R. HArTSON, D. Hix (1989). Toward empirically derived methodolo-
gies and tools for human-computer interface development. [International
Journal of Man-Machine Studies 31 (4), 477-494.

B.A. MYERS, W. BUXTON (1986). Creating highly interactive and graphi-
cal user interfaces by demonstration. Proceedings of SIGGRAPH 86,
249-258.

G.E. PrAFF (1985). User Interface Management Systems. Proceedings of
the Seeheim 1983 Workshop on UIMS's.

M. GREEN ET AL. (1987). Workshop on UIMS. Computer Graphics, Spe-

M. GREEN (1936). A survey of three dialogue models. ACM Transactions
on Graphics 5 (3), 244-275.

b

